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I. INTRODUCTION

I.1 Preliminary Remarks

This report presents a computer-based method of analysis of spur
gear system dynamics. The report is based upon research conducted by
the authors at the University of Cincinnati with the support of the NASA
Lewis Research Center from 1982 to 1985 under Grant NSG 3188. The
report represents a portion of the first author's doctoral dissertation.

Knowledge of the dynamic effects in gear systems has been of
increasing interest--stimulated by demands for stronger, higher-speed,
improved-performance, and longer-lived systems. There have been
numerous research efforts directed toward gear dynamic analysis. Still,
the basic behavior of the gear system has not been satisfactorily
understood.

For example, in industrial settings, a high performance gear system
is often obtained by overdesigning at the sacrifice of cost, material,
and compactness. In aerospace or military applications, where weight is
a premium, geared systems are often designed under conditions very close
to the failure 1imits, thus introducing uncertainties in performance and
life prediction. Moreover, gear systems are generally designed using
static analyses. However, when gear systems are operating at high-
speed, there are several factors affecting their performance which are
enhanced by the speed. Specifically, the gear behavior can be affected
by such jtems as:

1) Torsional stiffness of the gear shafts.

2) Gear tooth loading and deflection.

3) Gear tooth spacing and profile errors
4) Speed of the rotating bodies.
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5) Mounting aliynment.

6) Dynamic balance of rotating elements.

7) The mass of the gears and shafts.

8. The mass of the driving (power) and driven (load)
elements.

There is not full agreement by researchers on the best methods for
evaluating dynamic load effects. Hence, a gear designer is often
confronted with conflicting theories. Therefore designers have had to
rely on past experience, service satety factors, and upon experimental
data with limited range of applicability.

If major advances in mechanical reliability, optimum performance
and design automation are to be obtained, more in-depth understanding of
the dynamic behavior is needed. Computer analysis and experimental
investigation are two suitable approaches for this study. Experiments
which produce reliable results are costly involving time consuming
procedures. Experiments are generally more expensive, both in time and
money, than computer analysis. Hence, if reliable computer software can
be developed, taking into account the parameters used in experiments,
many experimental hours in the analysis and design of spur gear systems

could be saved.

[.2 Literature Survey

Research efforts on gear system dynamics have been conducted for

many years. In 1892, Lewis [1]* recognized that the instantaneous load

*Numbers in brackets refer to References at the end of the Report.




of the tooth was affected by the velocity of the system. In 1925, a
large experimental program was started by a research committee, headed
by Earl Buckingham [3], and endorsed by the American Society of
Mechanical Engineers. They published the first authoritative report on
gear dynamics in 1931. This report presented a procedure on determining
the so-called dynamic load increment due to mesh dynamics and gear tooth
errors.

In 1959, Attia [4] performed experiment to determine actual
instantaneous loading. He found that Buckingham's results gave more
conservative values.

In 1958, Niemann and Retti [5] found that larger masses caused
higher dynamic loads, but as the average load became larger the effect
of larger masses became less important. They also found that very
heavily loaded gear systems showed no appreciable dynamic load
increment, whereas in lightly and moderately loaded gear systems there
were considerable dynamic load increments. In 1958, Harris [6]
suggested that for gear systems isolated from external stimuli, there
are three internal sources of dynamic loads: 1) Error in the velocity
ratio measured under the working load; 2) Parametric excitation due to
stiffness variation of the gear teeth; and 3) Non-linearity of tooth
stiffness when contact is lost. In 1970, Houser and Seireg [7] developed
a generalized dynamic factor formula for spur and helical gears
operating away from system resonances. The formula took into
consideration the gear geometry and manufacturing parameters as well as
the dynamic characteristics of the system.

In 1972, Ichimaru and Hirano [8] analyzed heavy-loaded spur gear
systems with manufacturing errors under different operating conditions.
They found that the change in tooth profile showed a characteristic

trend to decrease dynamic load. In 1978, Cornell and Westervelt [9]
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presented a closed form solution for a dynamic model of spur gear system
and showed that tooth profile modification, system inertia and damping,
and system critical speeds, can have significant effect upon the dynamic
loads. In 1981, Kasuba and Evans [10] presented a large scale digitized
extended gear modeling procedure to analyze spur gear systems for both
static and dynamic conditions. Their results indicated that gear mesh
stiffness is probably the key element in the analysis of gear train
dynamics. They showed that the gears and the adjacent drive and load
systems can be designed for optimum performance in terms of minimum
allowable dynamic loads, for a wide range of operating speeds.

In 1981, Wang and Cheng [11] developed another dynamic load
response algorithm. They reported that the dynamic load is highly
dependent on the operating speed. Nagaya and Uematsu [12] stated that
because the contact point moves along the involute profile, the dynamic
response should be considered as a function of both the position and
speed of the moving load. In 1982, Terauchi, et al. [13] studied the
effect of tooth profile modifications on the dynamic load of spur gear
systems. According to their results, the dynamic load clearly decreased

with proper profile modifications.

1.3 Objective
The objective of the research reported herein is the development of
a theoretical basis and an.associated comptuer-aided design procedure,

for studying dynamic behavior of spur gear systems. Procedures for the

research include the following steps:




1. The development of a mathematical model of spur gear systems
consisting of the gears, the shafts, and the connected masses.
2. The evaluation of the properties of the system components.
3. The development of governing equations for the entire system.
4. The development of a static and dynamic analyses of the system.
5. An examination of the effects upon system behavior of the following
parameters:
Mass moments of inertia
Stiffness of components
Operating speeds of system
Damping factors
System Natural Frequency
Contact ratios
6. The development of system component modification for design
optimization.
The computer software developed herein is intended to be used by
engineer and designers in the development of actual gear systems. The
developed software is believed to be among the most detailed and

advanced prepared to date.



[I. THE SYSTEM AND ITS PROPERTIES

IT.1 System Definition and Methods of Analysis

Figure I1.1 shows a sketch and a schematic model of NASA 3000-hp
transmission stand. The system is very elaborate.. However, one can
view the system as containing three basic elements: The first is the
gear; the second is the shaft; and the third is the mass connected to
the shaft. Hence, an elaborate system can be modelled by components
_consisting of simple gear set. Figure I1.2 illustrates a model of a
simple spur gear system with those three basic elements.

The system properties such as stiffness, inertias, dampings,
frictions, contact ratio, need to be determined to develop the dynamic
analysis.

The static properties of the system and its components may be
obtained from the literature in gearing, and from the principles of
strength of materials, mathematics, Tubrication, vibration analysis, and
finite element methods. These properties are useful in the sequel in
conducting the dynamic analysis.

Given the model, the governing equations of the system are written
and integrated. [t is assumed that the dynamic activity of the gears 1is
confined to the rotating plane of the gears. The rotating axes are
assumed to be symmetrical. OQOut-of-plane twisting and misalignment
effects are neglected.

A parametric study is performed to examine the relative effects of
rotating speed, applied load, lubrication and damping, mass, stiffness,
diametral pitch and contact ratio.

Finally, analaytical procedures are developed for computer-aided
design of the system. Specifically, the system is modified to obtain

b
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improved performance based upon the results of the simulation. These

are discussed in a subsequent report.

I1.2 Spur Gear Geometry: The Involute Curve andIts Usc as a Tooth Profile

The Involute curve is used almost exclusively for spur gear tooth
profiles. The involute provides numerous kinematic advantages. The
involue generally described as the curve generated by the locus of the
end of a 1ine unwound from the circumference of a circle. See Figure
[1.3. The circle from which the string is unwound is called the "base
circle."

The equations of the involute may be developed as follows: Let Rb
be the radius of base circle. Let r and 6 be the radial and angular
coordinates of a point on the involute, and let 8 be the angle diép]aced
by the tangent line as shown in Figure I1.3. Hence, we have

1

8 = B-y = g - tan (11.1)

H

where y is the difference between B and 6 as shown.
The length of the generating line ¥ rZ—RZb is also the length of
the circumference of the base circle subtended by the angle B. Hence,

we have

(11.2)



Involute Curve

Base Circle

Figure I1.3 Involute Curve Geometry
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Then from Equation (II.1) we have

2 .2
2 .2 r--R
ST S A (11.3)
b b

This is the polar representation of the involute curve. The
generating line is always normal to the involute curve and its length is
a measure of the radius of curvature of the involute curve. Ffor
example, length AP is the radius of curvature of involute curve at
point P.

Consider the action of one involute against another involute as
shown in Figure 11.4. The point of contact between the two involutes is
that point where the tangents to the two curves coincide. The tangents
to both involutes are always perpendicular to their generating Tines.
Hence, the tangents to the two involutes coincide only when the
generating line of one is a continuation of the generating line of the
other. Therefore, the locus of points of contact between two involutes
is the common tangent (AB) to the two base circles as shown in Figure
I1.4.
| When an involute is revolved at a uniform rate, the length of its
generating 1ine (AE) changes uniformly. Similarly, the length of the
generating line (BD) on the mating involute changes at the same uniform
rate. The length of the common tangent (AB) to the two base circles
remains constant. Hence, the relative rate of motion depends only upon
the relative sizes of two base circles. The contact takes place only
along the common tangent. The relative rates of rotation are

independent of the distance between the centers of the two base circles.
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The relative rates of rotation of the two involutes may be
represented by two plain disks which drive each other by friction. Such
disks are known as pitch disks, while their diameters are known as pitch
diameters.

From Figure 11.4 we see that the intersection of the common tangent
(AB) with the common center line (0102) of the two involutes
establishes the pitch point P and the radii of the two pitch circles:

R 1 and R

P p2’

The angle between this common center line 0102 and a line
perpendicular to the common tangent AB is called the pressure angle.
There is a relation between the pitch diameter, base diameter, and

pressure angle of any given involute. That is for a given pitch

diameter, there is a unique corresponding pressure angle: Let Rbl and
sz be the base radii and let Rp1 and sz be the pitch radii of first
and second involutes.
Let ¢ be the pressure angle.
Then
Ryq = Rpl cos ¢ and sz = sz cos ¢ (11.4)

Next, consider Figure I11.5 which shows Lhe involute profile change
with roll angle. Let ¢ represent the roll angle, and let the anqular
intervals s Eov €4 and €a be equal. We note from Figure I1.5 that
the length of the curve ab is much less than that of bc; that bc is
shorter than cd; etc. Thus, when two involutes are acting against each
other, a combined rolling and sliding action takes place due to the
varying lengths of equal angular increments on the profiles. From
Figure II.5 it is evident that the rate of sliding between two involutes

is continually varying. The sliding which is high initially reduces to

12
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zero at the pitch point, and then changes direction, and increases
again.

Equations for determining the sliding speed at any point on a pair
of involute gear teeth may be derived as follows [1]: The sliding speed
is the difference in speeds of the ends of the generating lines of the
involutes, projected normal to the line of action, as they pass through
the Tine of action. The angular velocity of these generating lines is
the same as the angular velocities of the gears themselves. The sliding
speed is then determined from the products of the angular velocities and
the lengths of the generating lines.

Hence from Figure I1.6 the sliding speed VS may be expressed as:

V.= (R

s = (Rep9p = Rep9) (11.5)

where RCl and RC2 are the tooth radii of curvature of the driving and

driven gears and where w, and w, are the angular speeds of the driving

1
and driven gears. Let V be the pitchline speed. Then V may be

expressed as
V=R _ w = szwz (11.6)

where Rp1 and sz are the pitch radii of the driving and driven gears.
Hence; by substituting for wy and @, in Equation (I1.5) the sliding

speed becomes:

pl 2 (11.7)
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Figure I1.5 Rol11 Angle and Change of Involute Profile Length
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Next, let ) and r, measure the radial distance from the gear

centers to the tooth contact point as shown in Figure 11.6. Then Re1

and Re2 may be expressed in terms of rys r the pressure and ¢, the

2’

base circle radii Rbl and sz and the pitch radii as:

RCl + RC2 = (Rp1 + sz) sing (11.8)
and

_ 2 2

RC1 =VJry - Rbl (11.9)

and
/2 2 : 2 2
R vyr, -R = (Rpl + sz)swn¢ - //rl - Rb1 (11.10)

c2 = 2 b2

Finally, by substituting for Ry and R, in Equation (I1.7) the

1 2
sliding speed VS becomes (see [1]):
_ v 2 2 . /) 2 .2
VS = ﬁ;;ﬁ;; {sz " -Rb1 - Rpl[(Rp1+Rp2)swn¢ - rl-Rbl]
_ Vv /2 2 :
= lepZ (Rp1+Rp2) [ " —Rbl -Rpls1n¢]} (I1.11)

IT.3 Deflection and Stiffness of Spur Gear Teeth

The static deflection of a pair of mating teeth is assumed to be

composed of the following components:

1. Cantilever beam deflection of gear teeth including bending,
shear, and compression deformation.

2. Deflection due to rotation of tooth base because of the
flexibility of tooth foundation.

3. Local contact (Hertz) deformation at contact point.

17



The deflection of a gear tooth is calculated normal to the tooth
profile. The foundation effect and the shear effect are important
because of the "stubbiness" of a gear tooth. In this research phase we
consider only Low Contact Ratio Gears (LCRG), with contact ratio between
1.0 and 2.0. However, the analysis can easily be extended to higher
contact ratio gears.

I1.3.1 Direction of the Applied Load on a Tooth Profile

The application point and direction of the transmitted load by
meshing teeth at different contact positions can be obtained through the
involutometry of the tooth profile: given the pitch radius Rp, the
pressure angle ¢, and the circular pitch PC, let an X-Y coordinate
system be defined as shown in Figure I1.7. The tooth thickness on the
pitch circ]e,tp, is approximately half of the circular pitch Pc‘ The
tooth thickness t1 at any other point i on the tooth profile, with

radius Ri from the gear center, can be expressed as

t; = 2 Ri [(tp/ZRp) + inve - inve 1.] (I1.12)

where 6, = cos_l(Rb/Ri) and where inv x is the involute function defined

as:
inv x = tan x - X (I1.13)

The angle x between the Y-axis and the radial line to the contact point
is:
Vi o= (E/2R) + inve - inve (11.14)

The angle 8 between the transmitted load at point i and the x-axis is:

18




Figure I1.7 Direction of Transmitted Load
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B, =8 - ¥, (11.15%)

The chordal tooth thickness h at point i is

=
L]

2R, sinwi (I1.16)

Finally, the x and y coordinates at point 1 are:

<
i

. . siny.
i R1 5 w1

; Ri cosy, (11.17)

><
]

These coordinates will be useful in developing geometrical

properties for calculating deflection and stiffness.

I1.3.2 The Tooth As a Cantilever Beam

The involute portion of a gear rooth may be modelled as a non-
uniform cantilever beam [9, 14]. Let Eo be an effective length which
extends from the tip to the beginning of fillet area as shown in Figure
[1.8. Let the beam be divided into a sequence of segments as shown.
The deflection and compliance can then be obtained using the principles
of elementary strength of materials. For each segment i, the height ?i,
the cross-sectional area Ai’ and the area moment on inertia I, are taken

as average values at both faces according to the equations:

20
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Vo= Yy ¥y) /2

Ro=(Ay+Aq)/2=2FY (I1.18)
i =  Ery3 3

L= (I + Loy) /2= F(Y] +Y5,,)/3

where F is the face width. The deflection at the loading point, in the
direction of load, is obtained by superimposing the deflection
contribution of the individual segments. Each segment itself is
considered as a cantilever beam having the inner end fixed and the
remainder of the tooth adjacent to the other end of the segment, as a
rigid overhand. Figure II.8 shows the applied load resolved into an
equivalent system of forces and moments at the outer face of the

segment. The components are:

wlj = wj cos§j
sz = wj s1n8j (I1.19)
Mij = wj (Lij cosBj - Yj sn1%)

where i refers to the segment, j refers to the loading position, Lij is
the distance from j to i, wj 1j and wzj are

the component loads at i, and Mij is the moment at i due to the load at

is the transmitted load, W

J.

[1.3.2.1 Bending deformation

The deformation at the load position j due to the deformation of

segment i is the sum of the following:

22




(i) Displacements due to load chosei

_ Wjcos Bg; 3
(qu>1j = ?%—1,—-——-3- (Tj) (11.20)
e 1
_ WscosBji ,-2
(qu)iJ- - EJE;—T'."‘]'(T,] Lij) (11.21)
1

(ii) Displacements due to moments M.,

J
Wi(Ljscos gi-Ysisingy) 2
= “3-ij i~
(9g2)14; SET = (T7) (11.22)
e
W.(L,.cosB.-Y.sing.)
= 1. 1] ] ]
(qRZ)ij " J (TiLij) (11.23)

e’

where Ti is the thickness of segment i, g is the displacement due to
bending and I is the displacement due to rotation.

In the above expressions, Ee is the "Effective Young's modulus of
elasticity" whose value depends upon whether the tooth is "wide" or

"narrow". According to Cornell [14], a wide tooth is one for which
F/Y >5 (11.24)

where Y is the tooth thickness at the pitch point. 1In this case the

tooth approximates plain strain deformation and Ee is

E = E/(1 - V)

. (11.25)

where E is Young's modulus of elasticity and v is Poisson's ratio. For

a "narow” tooth,

F/Y <5 (11.26)

In this case the tooth approximates plane stress deformation and E_ is:

E. = E (11.27)
23



11.2.2.2 Shear Deformation

The shear deformation (qs)ij is caused by the transverse component
of the applied load. It displaces the centerline without rotation.

For a rectangular cross section, the shear deformation is:

1.2 WjTiCOSBJ ) 2.4(1+v) WjTjcos B3
G Ai EeAi

(ag)i; = (11.28)

11.2.2.3. Axial Compression

This axial compression (q_)

Jij is caused by the component wj sinB

J
and is given by

. Wising Ty
e . (11.29)
[1.3.2.4 Totals
The total displacement at the load position j, in the direction of
the 1oad, due to deformation of segment i can thus be found from the

expressions:

(1) For a wide tooth, (plane strain):

(a1);5 = (Ag1*R *ago*app*as) 5088 +(a ) ;55 1n8;
2 2
= W [M (L3'_ + Tiliq * T4k ) -
E 3T. I
e i i
COSR;SiNgs T2Y LI
Bi Bl( 11 1.1-11 ) +
Ee 211 Ij
cos2 Bi (2.4(1+v)T, sinZB T -
J ( AT 1)+ — 3 (_..__)] (1130)
Ee Ai Ee A;

24




(2) For a narrow tooth (plane stress):

2 3 2 IJ'_Y.]'_er,L“
(ay); = W; S5 Bl [(T1/3”1Lﬁ“u)‘ta"“j( 2 13)]
1) J Ee Ti

2

R.

i

+

I1.3.3 Flexibility of the Fillet and Foundation

The effect of the flexibility of the foundation upon the
deformation at the load point is a function of the fillet geometry, and
the Toad position and direction. This deformation is influenced by the
effective fillet length and the fillet angle (approximately 75°).

Figure I1.9 shows a model of a gear tooth, its fillet, and its
foundation. Using the notation of the figure, deflection in the
direction of load at the loading point due to beam compliance of fillet
region, Iep is given by the following expressions:

(1) For a narrow tooth (plane stress):

2
Ten )6
- W, {Coszsi(be)i [(‘%L“ ()i (Lp)ys * (L)

r2, (Lp);
tansi(-—ﬁg—l~l-+Y1(Lfb)lj . 2.4(1 + ) + tar Bj]}
(Tg) (A ).
fb’1 fb’i (11.32)
(2) For a wide tooth (plane strain):
3
(Tep); 2
: cos?B ; 3 " (Tep)y * (Tep) g (Lgp)yy  2.8(140) (T )
(apy)iy = Wy ——I - + 1 ]
- (Tep)s (Rep)s
(T..)2y.
b’ .2
L cossysingg (T2 )i (tep)ig o185 (Tep)i
Ee (be)i . r-(’_‘ (Afb)j J
(11.33)
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Similarly, the deflection due to foundation flexibility, qc, 1s:

(1) For narrow tooth (plane stress):

2
W B; Lty 2 Lg)s
Z
+1.534(1 +§Eﬂ_ﬁj.g] (11.34)
2.4(1+y

(2) For a wide tooth {plane strain):

2
N 2y pte.67 (Le)i 2
Y EF T

e

2
1-v-2v°,,(Lf);
+2 ( )
f (1-v2 ) hf

(9¢e)

tancBg;

2
+ 1.534(1+ ?T?TT%:3 ] (11.35)

where (Lf)i and hf are

(Le)y = Ly + r(sinyg - siny) (I1.36)
and
he = h + 2r(cosy - cos ) (11.37)
where
- _ _(h)jtanB; = -
L, = (R ); cos(a ) —i—Ll%————éL R cosa (11.38)

“A number of investigators have studied the flexibility of gear
teeth. Experimental measurements have been made by Timoshenko and Baud
[16], Walker [16], Buckingham [16], and Van Zandt [16]. Theoretical
analyses have been developed by Timoshenko and Baud [16], Walker [16],
Weber [16], Richardson [16], and Attia [16]. The results of some of
these are compared with the results herein in Figure I11.12. It is seen

that they have similar shapes but different magnitudes. The discrepancy

27



may be due to the following factors:
1) Different reference points of zero deformation.
2) Different formulas used to calculate the deformation at the
contact area.
3) Empirical formulas extended beyond the accuracies of
experimental data.
Finally, the total deflection in the direction of load due to the
flexibility of the fillet and the foundation is obtained by adding the

above individual deflections. That is,

()55 = (agp)iy + (age) i (11.35)

I1.3.4 Local Compliance Due to Contact Forces

The local contact deformation consists of two elements: One is the
Hertz (or line-contact) deformation and the other is general compression
of the tooth between the contact point and the tooth centerline.

Using procedures of Lundberg and Paimgren [37], for contact
compliance of cylinders in roller bearing, the local deformation of gear

teeth may be approximated as:

.275
0.8

} 1
(a3)55 = 0.9

(11.37)
F1297F g !

e
where

E12 = (2 E1 E2)/(El + E2) (11.38)

where E1 and E2 are the elastic modulii of the driving and driven gears
respectively. Equation (I1.37) gives the contact compliance at the jth
calculation point. However, the compliance depends upon the magnitude
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of the load shared at the loading position. The magnitude is unknown.
Nevertheless, since the Toad in Equation (I1.37) is raised to the one-
tenth power, there is little error in replacing it by the average

transmitted load.

I11.3.5 Total Deflection and Stiffness

The total deformation (qt)i at load position j in the direction of
load is the sum of all the deformations calculated above. If the number

of segments is n, then

(ap)4 =

e~
—

] [(ag)sy + (ag)y5 + (a3)454] (11.39)
Figures 11.10 to I1.12 show the normalized total deformation of a
pair of teeth along path of contact for two different cases (different
gear radii).
The equivalent stiffness of a gear tooth is defined as the ratio of
the transmitted load and the total deformation:

D

(Kg)J = WJ/(qt)j (11.40)

Hence the average stiffness of a meshing tooth pair is:

He~1 3

(K9)4yq = =

avg (k9); (11.41)

i=1

where n is the number of meshing positions.
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II.4 Mesh Analysis

I1.4.1 Analysis of the Meshing Cycle

Figure I1.13 illustrates the motion of a pair of meshing teeth.
The initial contact occurs at A, where the addendum circle of the driven
gear intersects the line of action. As the gears rotate the point of
contact will move along the line of action, APD. When the tooth pair
reaches B, the recessing tooth pair disengages at D leaving only one
tooth pair in contact. From B through P to C is then a single contact
zone for low contact ratio gears. When the tooth pair reaches point C,
the next tooth pair begins engagement at A and starts another cycle.

In our analysis, the posiiton of the contact point of the gear
teeth along the 1ine of action is expressed in terms of roll angles of
the driving gear tooth. This is therefore consistent with the analysis
of gear tooth deflection and stiffness, which is also expressed in terms

of roll angles of the driving gear tooth.

I1.4.2 Transmission Error, Stiffness, and Load Sharing

Transmission error is defined as the departure of a meshing gear
pair from the constant-angular speed ratio, as expected from the tooth
number ratio. Transmission error is thus the measure of instantaneous
variation from the ideal nominal value. Transmission error arises from
the following sources:

1. Combined deflection of meshing teeth

2. Tooth spacing error

3. Tooth profile error

4. Runout error
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Usually the transmission error is expressed as an angular value.
However, linear values are convenient for use in design and analysis
computations. Specifically, in calculating the total transmission error
for a meshed gear pair, the Tinear component values for each gear are
often the same, whereas the angular values are a spectrum, inversely
proportional to the pitch radii.

Transmission error and its components at the contact point may be
expressed in the following notation: (The runout error is combined with
the tooth spacing errors)

Ed: The deflection of gear teeth at the contact point.

Es: The tooth spacing error. ES is positive if the tooth spacing

of the driven gear is less than the base pitch Pb’ or if the

tooth spacing of driving gear is greater than the base pitch

Pb’ Otherwise, ES is negative.

E : The tooth profile error. Ep is positive if material is
removed from the surface at the contact point. A]ternative]y,
Ep is negative if material is added to the surface at the
contact point.

The transmission error at the contact point. E_ is posistive

t
if the driving gear leads the driven gear. Otherwise, Et is
negative.
Let the sequence of mating tooth pairs be designated by:
a, b, c,...etc. Let the subscripts 1 and 2 designate the driving and
driven gears respectively. Then the transmission error (Et)J and the
load sharing wj at contact point J may be expressed as follows: For the

double contact zone with tooth pairs a and b in contact, we have:
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(€)= () ;+(Eg) s+(EQ,) s+ (ED ) 5+(ED)) S (11.42)
()5 = (E3)) {+(EQy) 5+ (EQ,) jH(EDY) S+ (ED,) 1+(EDp) +(ED,),
and (11.43)
Wl oWl = (11.44)
J J

where W is the total transmitted load. For the single contact zone,

with only tooth pair a in contact, we have:

a _ a a a
(Et)j = (Edl)j+(EdZ)j+(Ep1)j+(Ep2)j
and

To simplify the notation, we introduce the following items:

(Eg)y = (Egp)y + (Egp)y (11.47)
(Ep)y = (Epp)y * (Epody (11.48)
(Ed)j = (Edl)j + (Edz)j = QJWJ (11.49)

where Qj is the compliance at contact point j. To simplify the
analysis, we assume that the transmission error is the same for tooth
pairs a and b when they are sharing the transmitted load. Hence, we

have
t)j = (Et)j (11.50)

Substituting from Equations (II.47), (I1.48), (I1.49) and (11.50) into

Equations (I1.42) and (I1.43), we obtain the relation:
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a,,a ay _ abyb b b
ijj + (Ep)j = ijj + (Ep)j t (ES) (11.50)

J

Solving Equations (II.44) and (II.51) for wj and wj give the results:

- P b b b
Wi = LOgW + (ED)5 + E(EQ); - (ED);1/ (3+Q%)  (11.51)
b _ . a a b by. b
Wyo= LOgW + (Ep)y = (B)yv - (317 (Q5+Q))  (11.52)

If all errors except tooth deflection are ignored then w? and W?

are:
a_,.b a b
wj - (ij) / (Qj + Qj)
b_ .2 a b
Wj = (ij) / (Qj + QJ) (11.55)

Figure 1II1.14 shows typical stiffness and load sharing
characteristics of a low contact ratio gear with tooth deflection but no
other transmission errors. Let a series of mating tooth pairs be
denoted as a, b, ¢, d and let points A, B, P, C, D be the same as those
in Figure II.13. Then, AB and CD represent the double contact regions,
BC represents the single contact region, and P is the pitch point.

The stiffness values at double contact regions are clearly much
higher than those at single contact regions. When gears rotate at
appreciable speed, this time-varying stiffness as shown in Figure I1.16
is the major exictation source for the dynamic response of gear systems.

The total transmitted load is shared between two pairs of teeth
within double contact regions. The magnitude of the load shared by each
individual tooth pair depends on the stiffness of that tooth pair. The

higher the stiffness, the higher the shared load.
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II.5 Lubrication and Friction

I1.5.1 Boundary, Mixed, and Hydrodynamic Lubrication

A purpose of lubrication is the reduction of friction between mating

surfaces. The relative motion between mating gear teeth produces

sliding and rolling friction which can be reduced but not totally

eliminated. The friction developed depends upon the following:

1) The characteristics of the lubricant.

~N

(
(2) The pressure exerted between the contacting bodies.
(3) The nature and condition of the contacting surfaces.
(4) The ambient and surface temperatures.

There are four basic cases of lubrication which may be described as

follows:

1.

2.

Boundary Lubrication: In this case the friction is mainly due to

the interaction of asperities of the contacting surfaces.

Mixed Lubrication [Partial Elastohydrodynamic(EHD) Lubrication]: In

this case the friction is created by both the interaction of
asperities and by elastohydrodynamic effects.

Elastohydrodynamic (EHD) Lubrication: In this case there is no

interaction of the asperities. The friction is a function of the
fluid properties of the lTubricant and in certain situations, the
surface quality. The mating surfaces deform elastically.

Hydrodynamic Lubrication: This case is the same as EHD Lubrication

except that there is no deformation of the mating surfaces.

Figure II.15 illustrates that these four cases, and Figure II1.16 shows a

representation of the friction coefficient for the four cases.
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An important parameter for separating regimes is the specific film

thickness X, defined as:
A o= hm].n /S (11.56)

where hmin is the EHD minimum oil film thickness and S" is the composite

surface roughness. S" may be expressed as:
Su = /Sz + 522 (1157)

The surface roughness varies for S1 and 52 are normally
arithmetic-average (AA) values. [Formerly, root-mean-square (RMS)
values were used for surface finish. The RMS value is approximatley
1.11 times the AA value.]

For Boundary Lubrication, ris less than 1 (A<1l), and the gears may

be thought of as running wet with oil. In this case the thickness of
the o0il film is quite small compared with the surface roughness.
Essentially full surface-to-surface contact is obtained in the Hertzian
contact band area. This is typical of slow-speed, high-load gears
running with a rough surface finish. Hand-operated gears in winches,
food presses, and jacking devices are typical of such gears.

For Mixed Lubrication A is between 1 and 5 (1<A<5), and partial

surface-to-surface contact. The asperities of the tooth surfaces
collide with each other, but substantial areas of the surfaces are
separated by a thin film. Mixed Lubrication is typical of medium-speed
gears with a good surface finish, which are heavily loaded, and which
are running with relatively viscous 0il. Most vehicle gears run under

mixed lubrication.
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For EHD Lubrication A is between 1 and 10 (1<ix<10) and for

Hydrodynamic Lubrication A is greater than 10 (A >10). In these cases,

the 0il film between contacting tooth surfaces is thick enough to avoid
surface-to-surface contact. Even high asperities miss each other.
Precision, high-speed gears generally operate under these Tubrication
conditions. Turbine-gears in ship drives, gears in electric generators,
and gears in compressors are examples. In the aerospace industry,
turboprop drives and helicopter main rotor gears operate in this region.
An exception may be some final-stage gears which may run slowly enough
to be in the mixed lubrication region.

References [17, 18, 19 and 31] provide additional details about the

lubrication cases and about surface finishes.

I1.5.2 Coefficient of Friction, Frictional Torques

There is a lack of agreement as to the proper form and variation of
the friction coefficient. Buckingham [1] has recorded a semiempirical

formula for the friction coefficient f as:
£ = 0.05e™0 185 + 0,002 /T, (11.58)
where VS is the sliding speed measured in in/sec. An analogous

expressions has been developed by Benedict and Kelly [22] and by
Anderson and Lowenthal [23]:

f = 0.0127 log (45.94 W/Fu_ vsvg) (11.59)

where W is the applied load, measured in 1b, F is the face width,

measured in inches, Vo js the rolling velocity, measured in in/sec, and
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o is the lubricant viscoscity, measured in 1b sec/in.

Figures I1I1.17 and II.18 show graphs of the friction coefficient as
given by Equations (II1.58) and (I1.59) as a function of the roll angle.
Figures II.19 and I1.20 show the resulting effect upon the friction
torque.

Finally, it should be noted that Equation (II1.59) is valid only
when the specific film thickness A [See Equation (I1.56)] has values
between 1 and 2. However, this is the range of many gear applications

of interest. Moreover, extending the use of Equation (I1.59) to systems

with higher values of A should not introduce serious errors.

I11.6 Shafts and Connected Masses

The shafts and connected masses are also components of the gear
system. The parameters related to dynamic system response are the polar
mass moment of inertia, and the stiffness of shafts and masses.

For bodies with annular cross-section, outside diameter DO, inside

diameter Di’ the polar area moment of inertia J is:

4 4
J =35 (0, - D) (11.60)
The torsional shaft stiffness K is then given by:
K= JG/2 (11.61)

where G is the shear modulus and & is the shaft length.

The polar mass moment of inertia I is given by the expression:

I=-l— m(DZ-ﬂz
8 ‘Yo 1

-~

)

-
Yoy
et
.
[o)}
~N

g

where m is the shaft mass.

47



IIT. SYSTEM DYNAMIC ANALYSIS

I11.1 Dynamic Analysis and Computational Procedure

II1.1.1 Mathematical Modelling and Equations of Motion

The system model as shown in Figure I1.2 is used for the dynamic
analysis. Its mathematical model, shown in Figure II.1, and the
resulting governing equations are developed using basic gear geometry
and elementary vibration principles. The equations may be expressed as

follows:

IyBy + Cq(By = 87) + Koyloy -09) = Ty

Jy8y + Coq(6y - 8y) + Kgyley - o) + Co(t)IRy 81 - Ryoby]
*Kg(t) TRy (Rpg®y = Ryp8)] = Ty (t)
I8, * Cp(8y = 61) + Kp(8y = 8;) + C (][R50, = Ry 6]

+Kg(8) TRy (RyPy = Ryp89)1 = Tep(t)

JLeL + Csz(eL - ez) + Ksz(eL - 92) = —TL (IT1.1)
where the notation is
6, 6, 8 angular displacement, velocity and accelera-
tion

GM, 91, 62, 6,  angular displacement of motor, gears 1 and 2,

and the load
48




1, Ou . (GEHH 1
4l n
MOTOR SHAFT 1
KT
Nl K
SHAFT 2 LGAD
K 4
(GEFIHZ
8,
Ksl Kg(t) Ksz
—VWVWV— —YWWW— —VVAV—
J J J J
MM
o c (v) C
sl g 82

Figure III.1 A Spur Gear System and Its Mathematical Model.

49



JM’ Jl, J2, JL mass moments of inertia of the motor, gears
1 and 2 and the load.
C

C C_(t) damping coefficients of the shafts and gear

s1’ “s2’ g

teeth.
TM’ TL’ Tfl(t), sz(t) input and output torques and
frictional torques on the driving (1)

and driving (2) gears.

The procedures developed in Part Il are used to determine the
spring stiffness, modelling the elastic behavior of the gear teeth. The
equations of motion will thus be dependent upon excitation terms due to
transmission errors. However, it is a difficult task even under ideal
geometry conditions to obtain a precise modelling of the dynamic
loading. The vibration of the gear tooth is affected by irregularity in
motion due to manufacturing errors and by deflections of the tooth due
to the applied loads. The motion is further affected by other teeth
leaving contact. The motion becomes more complicated when the teeth
begin to assume the entire load, resulting in a complex vibratory motion
taking place in the zone of single contact.

The meshing process leads to instantaneous load fluctuations in the
teeth even under constant loading conditions. Also, the magnitude of
the 1oad and the fluctuations are influenced by the damping effect of
the tubricant, and the proximity to system natural frequencies of the
operating frequencies.

Several assumptions are needed to simplify the analysis:

1. The dynamic process is defined in the rotating plane of the

gears. The out-of-plane twisting and misalignment are

neglected.
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2. Damping due to lubrication of the gears and shafts are
expressed as constant damping coefficients.

3. The differential equations of motion are developed using the
theoretical line of action.

4. Gear tooth stiffness is evaluated according to dynamic
considerations: That is, the reference point for tooth
deflection is assumed to be located at the radius of gyration.

5. Low contact ratio gear pairs are used in the analysis. The

contact ratio is taken between 1 to 2.

I11.1.2 Computational Procedure

Equations (III.1) are solved using a linearized-iterative proce-
dure. The linearized equationsare obtained by dividing the mesh period
into n equal intervals. In the analysis a constant input torque TM is
assumed. However, the output torque TL is assumed to be fluctuating due
to damping in the gear mesh, friction, and time-varying mesh stiffness.
Finally, a true involute profile is assumed.

Initial values of the angular displacements are obtained by
preloading the input shaft with the nominal torque carried by the
system. Initial values of the angular speeds are taken from the nominal
operating speed of the system.

The iterative process is as follows: The calculated values of the
angular displacements and angular speeds after one period, are compared
with the assumed initial values. Unless the differences between them
are sufficiently small, the procedure is repeated using the average of
the initial and calculated values as new initial values. The criteria

for repeating is:



le, - eJ > 0.001 0
and
|6, - 8,1>0.001 & (I11.2)

The term (Rb1 e1 - sz 92) in the equations of motion represents
the relative dynamic displacement of the gears. Let Bh represent the
backlash. Let gear 1 be the driving gear. The following conditions
can occur:

Case (i)

R., 8, - R

b1 %1 " Rp2 €27 0 (111.3)

This is the normal operating case and the dynamic mesh force wd is

defined as:
wdl— Kg(t)(Rbl 61 - szez) + Cg(t)(Rble1 - szez) (I11.4)
and
wd2 = wd1 (II11.5)
Case gii}
Ry18 = Rypf S0 and lele1 - szezl s Bh (I111.6)

In this case, the gears will separate and the contact between the

gears will be lost. Hence,

wd =0 (111.7)
Case giii)
Rblel - Rb262 <0 and IRble1 - Rb262| > Bh (111.8)
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In this case, gear 2 will collide with gear 1 on the backside. Then,

(IT11.9)
and

W, =W

I (111.10)

dl
The equations of motion contain damping terms for all components in
the system. The damping in the shafts is due to material damping.
Experiments have suggested that this damping is between 0.5% and 0.75 of
the critical damping (See Reference [35].) Hence, the effective damping

of shafts is taken as

(e]
|

s1 - 255 v Ksl/(l/dD + 1/J1) (IT1.11)

and

Cop = 25 4 Keo/ (179 + 1/3,) (I11.12)

where Es represents the critical damping ratio of shafts with value:
0.005.

Similarly, the effective damping of the gear mesh is taken as:

2 2
k RERE,J.J
1
c, = 26—t DE L2y (111.13)

g
Rp191%Rp2Y92

where & represents the critical damping ratio. Measurements of geared
systems show £ to range between 0.03 and 0.17 (See References [10, 11]).
In Equation (III.13) the average gear mesh stiffness is used and the
equivalent masses of the gears are concentrated at the base circle to

reflect their effects along the line of action.
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Figure II1.2 Flow Chart of Computational Procedure
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The flow chart of the computational procedure is shown in Figure

I11.2.

I11.2 Natural Frequencies

The natural frequencies of the system may be obtained by examining

the undamped equation of motion written in matrix form:

[J108] + [K1[e] = [0]

where the inertia matrix [J] is

4] =

and the stiffness matrix [K] is

[K] =

—

K
S

1

s]

sl

K, +(K). R

sl g’avg bl

'(Kg)angbleZ

55

-(K

52

)

g’avg

+(K,)

Rp1Rp2

angbZ

52

(111.14)

(I11.15)
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The average value of gear mesh stiffness is taken as the sum of the
discrete tooth stiffness values over one mesh cycle divided by the
number of mesh positions in the cycle.

Equations (I11.14) may thus be used to determine the eigenvalues

and thus the natural frequencies of the system.

I11.3 Paramefric Study

A brief parametric study was conducted to determine the effects of
the rotating speed, the l1oad, the stiffnesses, the inertias, and the
contact ratio on the dynamic load. The system examined consisted of two

identical gears having the following properties:

Number of teeth: 36

Diametral pitch: 8

Pitch diameter: 4.5 in

Pressure angle: 20°

Face Width: 1.0 in

Moment of inertia: 0.02947 in 1b sec’
Stiffness: 3.5355 x 10° 1b/in rad

Damping ratio: 0.10
The shaft stiffness, inertias were:
Shaft stiffness: 10081 in 1b/rad
Motor and Toad inertia: 0.08841 in 1b sec2 (each)

Finally, the first three system critical speeds were:

w: 89.6 rpm, 179.1 rpm, and 8688 rpm
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For gears with true involute profile under normal operating
conditions, the principal source of dynamic excitation is the time
varying tooth stiffness due to alternating single and double contact of
the tooth pairs. The gear system vibration depends upon the frequency
of this parametric excitation, and thus also the operating speed.

I11.3.1 Dynamic Load as a Function of Roll Angle

Figure II1.3 shows the variation of dynamic load response for a
pair of teeth as a function of roll angle. At lower speeds where the
excitation frequency is much lower than the resonance frequency, the
dynamic load response is basically a static load sharing in phase with
the stiffness change, superimposed with an oscillatory load at a
frequency corresponding to the natural frequency.

At higher speeds, close to the natural frequency, the dynamic load
variation becomes so abrupt that it produces tooth separation. The peak
dynamic load is much higher than the static load and is very Tikely a
source of gear noise and early surface fatigue.

Figure II1.4 shows the dynamic load response as a function of
operating speed. The major peak occurs at the natural frequency. The
second major peak occurs at the principal parametric resonance frequency
due to the parametric excitation of the time varying tooth stiffness.
This parametric resonance frequency is about half the system natural
frequency [27]. Finally, the dynamic factor is defined as the ratio of
dynamic load to static load.

Observe that for speeds above the natural frequency, the dynamic
response decreases steadily in the same manner as with elementary

vibratory systems.
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Figure I11.5 shows a three dimensional representation of the system
dynamic response. The horizontal axis represents the operating speed,
and the contact position along the tooth profile. The total number of
contact positions is 121. The vertical axis is the dynamic factor,
defined by the ratio of the dynamic load to the static load.

Figure II1.6 presents a contour plot of the system dynamic
response.

The shaded areas, represent regions where tooth separation occurs.
They are located in the double contact regions. At near resonance
speeds the vibration motion of gear bodies exceeds the deflection of the
meshing tooth pairs, inducing tooth separation.

As the speed increases, the dynamic response also shows a phase
shift towards the higher numbered contact positions. This phenonemon
can be seen by noting that the highest dynamic effect (at speeds ranging
from 600 rpm to 10400 rpm) occurs at different contact positions
beginning from position 51 and gradually changing to position 85. This
is an important factor when computing the root stresses.

I11.3.2 Effect of the Applied Load

Figure I1I.7 shows the maximum dynamic load on the system as a
function of the transmitted loads for different speeds.

The deflection of gear teeth changes the tooth stiffness and load
sharing between the teeth. The separation of gear teeth due to
vibration is resisted by the transmitted load. Therefore, the dynamic
load effect is decreased as the applied Toad is increased.

IIT.3.3 Effect of Damping

The damping due to viscous friction governs the dynamic Tload
response of the gear system. Figure III.8 shows the effect of damping

on the dynamic load response. It is seen that the damping has a greater
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effect near the reasonance frequencies than at frequencies away from re-
sonance.

I11.3.4 Effect of Stiffness and Mass Moment of Inertia

A. Stiffness: Changes in shaft stiffness have a minor effect on the
system dynamic response. However changes of tooth stiffness have a
major effect on the response. Figure II1.9 shows that the higher the
tooth stiffness the lower the dynamic response. This is consistent with
observations that as the tooth stiffness increases the mass effect of
gear bodies on the system dynamics is reduced. Figure III1.9 also shows
that system resonance frequencies are increased as the tooth stiffness
increases. This 1is a potentially useful effect for the design of gear
systems.

B. Mass Moment of Inertia: The effect of the shaft masses is small

compared to that of the gears. Figure III[.10 shows that as the gear
inertia is decreased the dynamic response is also decreased.

111.3.5 Effect of Diametral Pitch and Contact Ratio

For gears with different diametral pitches, the dynamic response is
different due to the change in contact ratio. Gears with a finer pitch
have a higher contact ratio. Since the contact ratio is a measure of
the duration of the load being shared by more than one pair of teeth, it
has a significant effect on the system dynamic response.

Figure I11.11 shows a comparison between gears having different
diametral pitches. The finer pitch gears, having a higher contact

ratio, have a smaller dynamic load effect than the coarser pitch gears.
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II1.4 Comparison with Experimental and Empirical Data

At an American Gear Manufacturer's Association (AGMA) meeting in
1927 A. A. Ross [24] introduced the following empirical formula for the
dynamic factor Kv:

K = —18 (111.17)

V.o 18 +/v
where v is the pitch line speed measured in ft/min. This expression
came to receive acceptance as a standard factor used by the AGMA.
A similar factor for use with higher precision gears was introduced

by Wellauer [25] in 1959:

K =/ —18 (111.18)

v 78 +/V

Equation (III.17) and (III.18) are recognized as being conservative
when applied with very high precision gears. That is they predict
dynamic laods which are larger than the physical loads.

Buckingham [1] also developed an expression for the dynamic load in
terms of the pitch 1ine speed, the applied 10oad and other geometrical
and physical factors. Buckingham's formula is

W

- _ 5
=W+ [ (2f, - f,] (111.19)

d 2

where wd is the dynamic load, W is the applied Toad and the factors fa

and f2 are
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-
|

= £1,/(F] + ) (111.20)

and

—4
"

, = FC+u (111.21)

where F is the face width in inches and C is a deformation factor given

by:
C =0.111 e E1E2/(E1 + E2) (I11.22)

where e is a profile error factor and E1 and E2 are elastic contacts of

the gears. The factor f, is
2
f1 = 0.00025[(R1 + RZ)/R1R2]mV (111.23)

where R1 and R2 are pitch radii of the gears, measured in inches, m is
the effective mass of the gears and, as before, V is the pitch 1ine
speed in ft/min.

Finally, Kubo [26] has recorded results of extensive experimental
studies on dynamic effects for high-precision spur gear systems.

Figure II1.12 shows a comparison of the AGMA high-precision formula
[Equation (II1.18)], Buckingham's formula, Kubo's results, and the

results of the computer simulation.
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IV. DISCUSSION

In reflecting upon the analysis there are several remarks which
might summarize the findings:

1. The model of Figure 11.2, Chapter 2 is relatively simple.
Indeed, it consists of only two spur gears and two shafts. Still, many
important aspects of dynamic loading are manifested by the model.

2. The model includes the effects of:

a. Masses and movements of jnertia of the gears and shafts.
b. The stiffnesses of the gears and shafts.

c. The operating speeds.

d. The friction and damping.

e. The tooth geometry.

3. The tooth stiffness is based upon a finite segment modelling.
It is developed by using fundamental principles of mechanics of
materials. It is dependent upon the tooth geometry-~-that is, the
involute form.

4. The loading is found to be significantly affected by the
contact ratio.

5. Tooth separation--leading to impact--occurs in the double
contact region since the deflections are smallest in that region.

6. Dynamic load generally increases with operating speed until a
system natural frequency is reached. The dynamic load decreases rapidly
beyond the natural frequency.

7. The dynamic factor is largest for contact points near the tooth

tip.
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8. The applied load has a minor effect upon the dynamic factor.
However, the dynamic factor decreases with applied load.

9. Damping and friction decrease the dynamic factor with the most
dramatic effects occuring near the system natural frequencies.

10. Tooth stiffness has a significant effect upon the dynamic
factor: The higher the stiffness, the lower the dynamic factor. Also,
the greater the stiffness, the higher the rotating speed of peak
response.

11. Shaft moment of inertia has a minimal effect upon the dynamic
factor. However, the greater the inertia, the greater the dynamic
effect.

12. Finally, for increased dimetral pitch, that is, high contact

ratio gears, the dynamic factor will be decreased.
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